
CVE-2016-0147: take a look at patched analyzing.

 BY nEINEI

On Apri l 12 in 2016, MS has released MS-16-40 bulletin, and mentioned the CVE-2016-147 vulnerability. Which about use-after-
free vulnerability of MSXML3, and mentioned the CVE-2016-0147 vulnerability, which i s about an UAF vulnerability of
MSXML3.The patch caught our attention.

Root cause analysis：According to the MS MS-16-40 bulletin, a use-after-free vulnerability was found in Microsoft Windows

that could lead to remote code execution. The issue was found in MSXML3 l ibrary. And can be exploited if the XML document
parsed by the library i s controlled by an attacker.

1) We stared that binary diffing analysis of windows 7 sp1 (unpatched MSXML3.DLL) File version 8.110.7601.18923 VS
8.110.7601.23373 (patched).

Between the 2 vers ions, we could see that there were very few changes rather than adding or removing functions.

After analyzing of AutoInitStalt::Init and GetAceptLanguagesW , we find they don’t request user input XML data , and they seem
l ike without user input XML data. So, let us focus on the DTD::CheckForwardRefs function.

DTD::CheckForwardRefs references to DTD and IDCheck object. Obviously, the function aims to check some DTD object through
IDCheck::check (). It will release the IDCheck Object until the IDCheck object no longer to reference any IDCheck object. Let us

aga in simplify two object model.

Class DTD {…

IDCheck *pIDCheckObject // offset 0x54 from the beginning of the DTD object.

…}

Class IDCheck {…

IDCheck *pNextObject; // offset 0x14, point to the another IDCheck object.

…}

If DTD::FindID find there is ID existed, it will release the IDCheck object and continue to get next IDCheck object cycl ic process
unti l the pNextObject point is null. If any no ID existing, function will raise a custom exception process.

After patched, we found that IDCheck::check only added exception handlers rather than other code. So, why fixed the
vulnerability in this way?

2)

Let’s look at a simplified vulnerability happening in this scene, repeated loading can be included DTD of XML data.

DTD of XML reference：http://xmlwriter.net/xml_guide/doctype_declaration.shtml

The cri tical functions ca lling order list like following:

msxml3!Document::loadXML –> msxml3!DTD::checkForwardRefs - > msxml3!DTD::addForwardRef - >
msxml3!DTD::addForwardRef-> msxml3!Document::loadXML…

Fri s t, After the msxml3!DocumentLLloadXML ca lled, i t will create a new DTD object through DTD:New(struct Document *a1,

s truct DTD **a2).

If some object reference two different ID, the program will be called the DTD::CheckForwardRefs function.

Fi rs t time, the offset 0x54 of DTD object has no reference IDCheck object. It will continue to ca ll the sxml3!DTD::addForwardRef
and create a new IDCheck object.

http://xmlwriter.net/xml_guide/doctype_declaration.shtml

By _MemAl loc function build a new IDCheck object in the memory space 0x598fe0.

Second time, allocation another IDCheck object in the memory space 0x589cfe0.

3)

Then, msxml3!DTD::CheckForwardRefs will reset this memory(IDCheck object) to be zero with its s trategy accordingly(free up

or set to be zero). Which IDCheck::check will be called when DTD::findNotation or DTD::findID will check the ID whether has
a l ready been check in a HASHTABLE of s tructure.

If so, i t will continue to execution, if not will raise a custom exception handlers. It will free some resources in exception
handlers which include IDCheck object.

0:000> p

eax=00000000 ebx=00000000 ecx=0589cfe0 edx=0000000d esi=0589cfe0 edi=00000000

eip=6e1d2983 esp=0016e460 ebp=0016e468 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

msxml3!MemFreeObject+0x1d:

6e1d2983 e809000000 ca l l msxml3!MpHeapFree (6e1d2991)

0:000> kp

Chi ldEBP RetAddr

0016e468 6e293937 msxml3!MemFreeObject+0x1d

0016e478 6e22d625 msxml3!IDCheck::`scalar deleting destructor'+0x19

0016e488 6e1e4947 msxml3!DTD::clear+0x43

0016e494 6e205265 msxml3!Document::clear+0x2e

0016e4cc 6e205526 msxml3!Document::abort+0x95

0016e4dc 6e2054f9 msxml3!Document::HandleParseError+0x23

0016e514 6e1e45f5 msxml3!Document::HandleEndDocument+0xb9

0016e548 6e1e451b msxml3!Document::run+0xda

0016e584 6e1eafe5 msxml3!Document::_load+0x18e

4)

When prgram loaded a including DTD of XML data again, it will trigger a UAF . because msxml3!_MemAlloc will return the freed

IDCheck object to user.

0:000> p

eax=0016e584 ebx=00000101 ecx=6e1e48f2 edx=00000000 esi=057c7ed8 edi=00000000

eip=6e1eafa7 esp=0016e594 ebp=0016e5d4 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

msxml3!Document::loadXML+0xa4:

6e1eafa7 e8e7d7feff ca ll msxml3!_MemAlloc (6e1d8793)

0:000> g

(5ac.95c): Access violation - code c0000005 (!!! second chance !!!)

eax=00000000 ebx=04a7c890 ecx=00000008 edx=00000000 esi=04a7c8a0 edi=0589cfe0

eip=76db97e9 esp=0016e544 ebp=0016e574 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010202

msvcrt!memset+0x5f:

76db97e9 f3ab rep s tos dword ptr es:[edi]

After patched version, msxml3!DTD::CheckForwardRefs added an exception handlers, When IDCheck::check raises an exception
event, the exception will be capture by msxml3!DTD::CheckForwardRefs. So IDCheck object will be set to zero and memory will

not be free, like the following msxml3!Exception::getException the following figure.

This is why, program calls msxml3!Document::loadXML again and return the memory (IDCheck object 0589cfe0)to invoker.

0:000> u 6e1eafa7

msxml3!Document::loadXML+0xa4:

6e1eafa7 e8e7d7feff ca ll msxml3!_MemAlloc (6e1d8793) // return 0589cfe0

6e1eafac 8bc8 mov ecx,eax

6e1eafae e8f5020000 ca ll msxml3!MemoryStreamForStrings::MemoryStreamForStrings (6e1eb2a8)

6e1eafb3 8945e0 mov dword ptr [ebp-20h],eax

6e1eafb6 57 push edi

6e1eafb7 68ffffff7f push 7FFFFFFFh

6e1eafbc ff7508 push dword ptr [ebp+8]

This is another way to repair UAF vulnerability. Hope that we can help you understand the root cause for CVE-2016-0147
vulnerability.

